PlumX Metrics
Embed PlumX Metrics

Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase Pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA

Molecular and Cellular Biology, ISSN: 0270-7306, Vol: 19, Issue: 3, Page: 2142-2154
1999
  • 133
    Citations
  • 0
    Usage
  • 69
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Pseudouridine (Ψ) residues were localized in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Ψ residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. When yeast mutants disrupted for one of the several pseudouridine synthase genes (PUS1, PUS2, PUS3, and PUS4) or depleted in rRNA-pseudouridine synthase Cbf5p were tested for UsnRNA Ψ content, only the loss of the Pus1p activity was found to affect Ψ formation in spliceosomal UsnRNAs. Indeed, Ψ formation in U2 snRNA was abolished. By using purified Pus1p enzyme and in vitro-produced U2 snRNA, Pus1p is shown here to catalyze Ψ formation in the S. cerevisiae U2 snRNA. Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA. As depletion of rRNA-pseudouridine synthase Cbf5p had no effect on UsnRNA Ψ content, formation of Ψ residues in S. cerevisiae UsnRNAs is not dependent on the Cbf5p-snoRNA guided mechanism.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know