Big-map: An automated pipeline to profile metabolic gene cluster abundance and expression in microbiomes
mSystems, ISSN: 2379-5077, Vol: 6, Issue: 5, Page: e0093721
2021
- 21Citations
- 112Captures
- 3Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef16
- Captures112
- Readers112
- 112
- Mentions3
- References3
- Wikipedia3
Article Description
Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these metabolic gene clusters in their genomes, no automated pipelines exist to profile the abundance and expression levels of such gene clusters in microbiome samples to generate hypotheses about their functional roles, and to find associations with phenotypes of interest. Here, we describe BiG-MAP, a bioinformatic tool to profile abundance and expression levels of gene clusters across metagenomic and metatranscriptomic data and evaluate their differential abundance and expression under different conditions. To illustrate its usefulness, we analyzed 96 metagenomic samples from healthy and caries-associated human oral microbiome samples and identified 252 gene clusters, including unreported ones, that were significantly more abundant in either phenotype. Among them, we found the muc operon, a gene cluster known to be associated with tooth decay. Additionally, we found a putative reuterin biosynthetic gene cluster from a Streptococcus strain to be enriched but not exclusively found in healthy samples; metabolomic data from the same samples showed masses with fragmentation patterns consistent with (poly)acrolein, which is known to spontaneously form from the products of the reuterin pathway and has been previously shown to inhibit pathogenic Streptococcus mutans strains. Thus, we show how BiG-MAP can be used to generate new hypotheses on potential drivers of microbiome-associated phenotypes and prioritize the experimental characterization of relevant gene clusters that may mediate them.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85116713598&origin=inward; http://dx.doi.org/10.1128/msystems.00937-21; http://www.ncbi.nlm.nih.gov/pubmed/34581602; https://journals.asm.org/doi/10.1128/msystems.00937-21; https://dx.doi.org/10.1128/msystems.00937-21; https://journals.asm.org/doi/10.1128/mSystems.00937-21
American Society for Microbiology
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know