Rapid diagnosis of bacterial vaginosis using machine-learning-assisted surface-enhanced Raman spectroscopy of human vaginal fluids.
mSystems, ISSN: 2379-5077, Page: e0105824
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Bacterial vaginosis (BV) is an abnormal gynecological condition caused by the overgrowth of specific bacteria in the vagina. This study aims to develop a novel method for BV detection by integrating surface-enhanced Raman scattering (SERS) with machine learning (ML) algorithms. Vaginal fluid samples were classified as BV positive or BV negative using the BVBlue Test and clinical microscopy, followed by SERS spectral acquisition to construct the data set. Preliminary SERS spectral analysis revealed notable disparities in characteristic peak features. Multiple ML models were constructed and optimized, with the convolutional neural network (CNN) model achieving the highest prediction accuracy at 99%. Gradient-weighted class activation mapping (Grad-CAM) was used to highlight important regions in the images for prediction. Moreover, the CNN model was blindly tested on SERS spectra of vaginal fluid samples collected from 40 participants with unknown BV infection status, achieving a prediction accuracy of 90.75% compared with the results of the BVBlue Test combined with clinical microscopy. This novel technique is simple, cheap, and rapid in accurately diagnosing bacterial vaginosis, potentially complementing current diagnostic methods in clinical laboratories.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know