Genomic Diversity of a Globally Used, Live Attenuated Mycoplasma Vaccine
Microbiology Spectrum, ISSN: 2165-0497, Vol: 10, Issue: 6, Page: e0284522
2022
- 5Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Mycoplasma synoviae live attenuated vaccine strain MS-H (Vaxsafe MS; Bioproperties Pty., Ltd., Australia) is commonly used around the world to prevent chronic infections caused by M. synoviae in birds and to minimize economic losses in the poultry industry. MS-H is a temperature-sensitive strain that is generated via the chemical mutagenesis of a virulent M. synoviae isolate, 86079/7NS. 32 single nucleotide polymorphisms have been found in the genome of MS-H compared to that of 86079/7NS, including 25 in predicted coding sequences (CDSs). There is limited information on the stability of these mutations in MS-H in vitro during the propagation of the vaccine manufacturing process or in vivo after the vaccination of chickens. Here, we performed a comparative analysis of MS-H genomes after in vitro and in vivo passages under different circumstances. Studying the dynamics of the MS-H population can provide insights into the factors that potentially affect the health of vaccinated birds. The genomes of 11 in vitro laboratory passages and 138 MS-H bird reisolates contained a total of 254 sequence variations. Of these, 39 variations associated with CDSs were detected in more than one genome (range = 2 to 62, median = 2.5), suggesting that these sequences are particularly prone to mutations. From the 25 CDSs containing previously characterized variations between MS-H and 86079/7NS, 7 were identified in the MS-H reisolates and progenies examined here. In conclusion, the MS-H genome contains individual regions that are prone to mutations that enable the restoration of the genotype or the phenotype of wild-type 86079/7NS in those regions. However, accumulated mutations in these regions are rare.
Bibliographic Details
American Society for Microbiology
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know