Spatial Structure of Glycogen Molecules in Cells
Biochemistry (Moscow), ISSN: 1608-3040, Vol: 83, Issue: 5, Page: 467-482
2018
- 12Citations
- 39Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef3
- Captures39
- Readers39
- 39
Review Description
Glycogen is a strongly branched polymer of α-D-glucose, with glucose residues in the linear chains linked by 1→4-bonds (~93% of the total number of bonds) and with branching after every 4-8 residues formed by 1→6-glycosidic bonds (~7% of the total number of bonds). It is thought currently that a fully formed glycogen molecule (β-particle) with the self-glycosylating protein glycogenin in the center has a spherical shape with diameter of ~42 nm and contains ~ 55,000 glucose residues. The glycogen molecule also includes numerous proteins involved in its synthesis and degradation, as well as proteins performing a carcass function. However, the type and force of bonds connecting these proteins to the polysaccharide moiety of glycogen are significantly different. This review presents the available data on the spatial structure of the glycogen molecule and its changes under various physiological and pathological conditions.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85047273985&origin=inward; http://dx.doi.org/10.1134/s0006297918050012; http://www.ncbi.nlm.nih.gov/pubmed/29738682; http://link.springer.com/10.1134/S0006297918050012; https://dx.doi.org/10.1134/s0006297918050012; https://link.springer.com/article/10.1134/S0006297918050012
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know