Neural Network-Based Decoding Input Stimulus Data Based on Recurrent Neural Network Neural Activity Pattern
Doklady Biological Sciences, ISSN: 1608-3105, Vol: 502, Issue: 1, Page: 1-5
2022
- 3Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: The paper reports the assessment of the possibility to recover information obtained using an artificial neural network via inspecting neural activity patterns. A simple recurrent neural network forms dynamic excitation patterns for storing data on input stimulus in the course of the advanced delayed match to sample test with varying duration of pause between the received stimuli. Information stored in these patterns can be used by the neural network at any moment within the specified interval (three to six clock cycles), whereby it appears possible to detect invariant representation of received stimulus. To identify these representations, the neural network-based decoding method that shows 100% efficiency of received stimuli recognition has been suggested. This method allows for identification the minimum subset of neurons, the excitation pattern of which contains comprehensive information about the stimulus received by the neural network.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85126538675&origin=inward; http://dx.doi.org/10.1134/s001249662201001x; http://www.ncbi.nlm.nih.gov/pubmed/35298745; https://link.springer.com/10.1134/S001249662201001X; https://dx.doi.org/10.1134/s001249662201001x; https://link.springer.com/article/10.1134/S001249662201001X
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know