Computer Simulation of a Biphasic Catalytic Process in the Presence of Polymer Microgels
Doklady Physical Chemistry, ISSN: 1608-3121, Vol: 512, Issue: 1, Page: 141-147
2023
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Abstract: The reaction of a biphasic catalysis with microgels bearing catalytic groups adsorbed at liquid interface was simulated for the first time using dissipative particle dynamics. It was shown that the rate of the catalytic process increases with the degree of deformation of the polymer network, which depends on the fraction of the crosslinker and the solubility of the polymer in both phases. It was found that the highest reaction rate was observed when the microgel was soluble in both phases due to an increase in its porosity (in comparison with amphiphilic microgels) and in the water–microgel–oil contact area with a simultaneous decrease in the time for the reagents to reach the catalytic groups due to the flattening of the microgel. The results obtained can be useful for increasing the efficiency of a wide range of catalytic reactions of the type considered through the use of network-like macromolecules.
Bibliographic Details
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know