Mutational process in protein-coding genes of human mitochondrial genome in context of evolution of Homo genus
Molecular Biology, ISSN: 0026-8933, Vol: 47, Issue: 6, Page: 807-813
2013
- 1Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The human mitochondrial genome, although small in size, shows a high level of variation that differs across nucleotide groups. In this work, mutation rates in mtDNA were compared in species of the Homo genus, including humans, Neanderthals, Denisova hominins, and other primate species. It was found that more than half (56.5%) of the polymorphisms in protein-coding genes of human mtDNA are actually reverse mutations to the pre-H. sapiens state of the mitochondrial genome. Among hypervariable nucleotide positions, only a small portion of mutations are specific to H. sapiens, while the majority of mutations (both nucleotide and amino acid substitutions) result in a loss of Homo-specific variants of polymorphisms. Most commonly, polymorphism variants specific to H. sapiens arise as a result of unique forward mutations and disappear mainly due to multiple reverse mutations, including those in mutational hot spots. © 2013 Pleiades Publishing, Inc.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84890092941&origin=inward; http://dx.doi.org/10.1134/s0026893313060083; http://link.springer.com/10.1134/S0026893313060083; http://link.springer.com/content/pdf/10.1134/S0026893313060083; https://dx.doi.org/10.1134/s0026893313060083; https://link.springer.com/article/10.1134/S0026893313060083
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know