Riemann–Hilbert approach to coupled nonlinear Schrödinger equations on a half-line
Theoretical and Mathematical Physics (Russian Federation), ISSN: 1573-9333, Vol: 220, Issue: 3, Page: 1496-1514
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: We use the Fokas method to investigate coupled derivative nonlinear Schrödinger equations on a half-line. The solutions are represented in terms of solutions of two matrix Riemann–Hilbert problems (RHPs) formulated in the complex plane of the spectral parameter. The elements of jump matrices are composed of spectral functions and are derived from the initial and boundary values. The spectral functions are not independent of each other, but satisfy a compatibility condition, the so-called global condition. Therefore, if the initial boundary and values and the defined spectral functions satisfy the global condition, the RHP is solvable and hence the derivative nonlinear Schrödinger equations on a half-line are solvable.
Bibliographic Details
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know