Similarity of Human Mitochondrial DNA Nucleotide Substitution Spectra Reconstructed over One and Many Generations
Russian Journal of Genetics, ISSN: 1608-3369, Vol: 60, Issue: 8, Page: 1109-1115
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract—Using phylogenetic analysis of mitochondrial whole genome nucleotide sequences (mtDNA), which allows the study of genetic changes over many generations, a spectrum of nucleotide substitutions (along the L-strand of mtDNA) was reconstructed in European populations. The spectra of mtDNA nucleotide substitutions observed in a heteroplasmic state (at the ≥1 and ≥5% levels) in first generation children were also analyzed. It was found that the spectra of nucleotide substitutions reconstructed over one and many generations practically do not differ in their main parameters: the distribution of pyrimidine and purine substitutions (with predominance of T→C transitions) and the ratio of the number of transitions and transversions. Analysis of the phylogenetic tree of mtDNA haplotypes in Europeans clearly revealed the influence of negative (purifying) selection on mitochondrial gene pools. It is suggested that the selective processes guiding the mtDNA evolution in one and many generations are of a similar nature, i.e., are caused by negative selection. The problem of how mutations occur and spread in mitochondria of germ line cells is discussed.
Bibliographic Details
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know