Effect of Dust Evaporation on the Fossil Magnetic Field of Young Stars and Their Accretion Disks
Astronomy Reports, ISSN: 1562-6881, Vol: 66, Issue: 3, Page: 200-220
2022
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: The theory of the fossil magnetic field of young stars and their accretion disks has been verified by comparing the observational data with the results of numerical simulations of the collapse of protostellar clouds. A new model of dust evaporation has been proposed, in which the parameter is not the thickness of the mantles, but the initial ratio of the core radius to the mantle radius of a dust grain. A semi-analytical description of the evolution of the radius distribution of dust grains was constructed. On its basis, the variations in the relative number density of dust grains, as well as the average values of the radius, cross-sectional area, and mass of dust grains, were calculated. It was shown that at the stage of disappearance of dust cores, these averages reach their maxima, but this does not affect the interaction of dust with gas particles, since the dust becomes scarce. Using cloud models W3 (main), NGC 2024, and DR 21 OH1, it has been demonstrated that neglecting dust evaporation underestimates the fossil magnetic field by several times. The possibility of formation of a magnetic compaction at the outer boundary of the zone of strong magnetic field diffusion (dead zone) has been confirmed. It is concluded that a correct calculation of dust evolution, ionization of the medium, and collapse anisotropy makes it possible to match the theoretical and observed magnetic fields of young stars and their accretion disks.
Bibliographic Details
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know