Heterostructures of Quantum-Cascade Lasers with Nonselective Overgrowth by Metalorganic Vapour Phase Epitaxy
Technical Physics Letters, ISSN: 1090-6533, Vol: 49, Issue: Suppl 3, Page: S155-S158
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: The possibility of fabrication of 4.6 μm spectral range quantum-cascade laser heterostructures by molecular-beam epitaxy technique with non-selective overgrowth by the metalorganic vapour-phase epitaxy is shown. The active region of the laser was formed on the basis of a heteropair of InGaAs/InAlAs solid alloys. The waveguide claddings are formed by indium phosphide. The results of surface defects inspection and X-ray diffraction analysis of quantum-cascade laser heterostructures allow to conclude that the structural quality of the heterostructures is high and the estimated value of the root mean square surface roughness does not exceed 0.7 nm. Lasers with four cleaved facets exhibit lasing at room temperature with a relatively low threshold current density of the order of 1 kA/cm.
Bibliographic Details
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know