PlumX Metrics
Embed PlumX Metrics

Role of glycolysis and antioxidant enzymes in the toxicity of amyloid beta peptide Abeta25-35 to erythrocytes

Bioorganicheskaia khimiia, ISSN: 0132-3423, Vol: 34, Issue: 5, Page: 654-660
2008
  • 5
    Citations
  • 0
    Usage
  • 6
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The role of glycolysis and antioxidant enzymes in amyloid beta peptide Abeta(25-35) toxicity to human and rat erythrocytes was studied. The erythrotoxicity of Abeta(25-35) was shown to increase two- to fourfold both in the absence of glucose in the incubation medium and upon the addition of sodium fluoride, an enolase inhibitor. Potassium cyanide, a Cu,Zn-superoxide dismutase inhibitor, abolishes the toxic effect of Abeta(25-35) to erythrocytes, whereas mercaptosuccinate, a glutathione peroxidase inhibitor, and ouabain, a Na+,K+-ATPase inhibitor, promote it. Sodium azide, a catalase inhibitor, did not affect the cell lysis under the action of Abeta(25-35) . The results support the hypothesis that H2O2, Cu,Zn superoxide dismutase, and glutathione peroxidase are involved in the toxicity mechanism rather than superoxide radical. Glycolysis and Na+,K+-ATPase play a substantial protective role. Fullerene C(60) nanoparticles are toxic to erythrocytes of both types; their toxicity is not related to enhanced oxidative stress and the mechanism of toxicity differs from that of Abeta(25-35) .

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know