Scale Effect in a Fluid-Conducting Fault Network
Geology of Ore Deposits, ISSN: 1555-6476, Vol: 61, Issue: 4, Page: 293-305
2019
- 2Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: This paper successively reports on a methodology for investigating the orientation and morphogenetic characteristics of fault systems at four scale levels: kilometers, meters, centimeters, and millimeters. The research object is the Urtui granite massif in southeastern Transbaikalia west of the Streltsovska caldera, incorporating unique uranium deposits. The massif is composed of Late Riphean granites and granite gneisses variably affected by dynamometamorphic and hydrothermal–metasomatic alterations and is crosscut by numerous faults with traces of fluid activity from various tectogenesis episodes. The relationship between the geometric parameters of the fault systems, such as specific density and specific length, has been established. It is advisable to use these geostructural data for conceptual and numerical modeling of fluid filtration and radionuclide transport processes in the three-dimensional fractured–pore space of crystalline rocks, for reconstructing and modeling uranium ore formation, and using the geological space for the isolation of radioactive materials.
Bibliographic Details
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know