Recsplit: Minimal perfect hashing via recursive splitting
Proceedings of the Workshop on Algorithm Engineering and Experiments, ISSN: 2164-0300, Vol: 2020-January, Page: 175-185
2020
- 18Citations
- 11Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
A minimal perfect hash function bijectively maps a key set S out of a universe U into the first jS j natural numbers. Minimal perfect hash functions are used, for example, to map irregularly-shaped keys, such as strings, in a compact space so that metadata can then be simply stored in an array. While it is known that just 1:44 bits per key are necessary to store a minimal perfect hash function, no published technique can go below 2 bits per key in practice. We propose a new technique for storing minimal perfect hash functions with expected linear construction time and expected constant lookup time that makes it possible to build for the first time, for example, structures which need 1:56 bits per key, that is, within 8:3% of the lower bound, in less than 2 ms per key. We show that instances of our construction are able to simultaneously beat the construction time, space usage and lookup time of the state-of-the-art data structure reaching 2 bits per key. Moreover, we provide parameter choices giving structures which are competitive with alternative, larger-size data structures in terms of space and lookup time. The construction of our data structures can be easily parallelized or mapped on distributed computational units (e.g., within the MapReduce framework), and structures larger than the available RAM can be directly built in mass storage.
Bibliographic Details
Society for Industrial & Applied Mathematics (SIAM)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know