Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem
SIAM Journal on Control and Optimization, ISSN: 0363-0129, Vol: 40, Issue: 3, Page: 824-852
2002
- 12Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef7
Article Description
We study an infinite horizon stochastic control problem associated with a class of stochastic reaction-diffusion systems with coefficients having polynomial growth. The hamiltonian is assumed to be only locally Lipschitz continuous so that the quadratic case can be covered. We prove that the value function V corresponding to the control problem is given by the solution of the stationary Hamilton-Jacobi equation associated with the state system. To this purpose we write the Hamilton-Jacobi equation in integral form, and, by using the smoothing properties of the transition semigroup relative to the state system and the theory of m-dissipative operators, we show that it admits a unique solution. Moreover, the value function V is obtained as the limit of minima for some approximating control problems which admit unique optimal controls and states.
Bibliographic Details
Society for Industrial & Applied Mathematics (SIAM)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know