General method to sample systems in the microcanonical ensemble using Monte Carlo simulations
European Physical Journal B, ISSN: 1434-6036, Vol: 94, Issue: 1
2021
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Monte Carlo simulations have boosted the numerical study of several different physical systems and in particular, the canonical ensemble has been especially useful because of the existence of easy and efficient simulation algorithms. Nevertheless, nature does not know about statistical ensembles and therefore it is desirable and a theoretical challenge to show how to perform numerical simulations in the microcanonical ensemble without the use of unphysical degrees of freedom. In this article, we present a straightforward applicable method based on the concepts of a configurational temperature estimator (Rugh Phys Rev Lett 78:772, 1997; Gutiérrez et al. J Phys A Math Theor 51:455003, 2018) and on stochastic dynamics, which is independent of the Monte Carlo update strategy, and can be implemented for both local update or cluster algorithms. We illustrate it by performing a numerical simulation of the two-dimensional XY-model, finding the equilibrium temperature of two spin subsystems initially at different temperatures when they are put into thermal contact. Graphic abstract: [Figure not available: see fulltext.].
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099883780&origin=inward; http://dx.doi.org/10.1140/epjb/s10051-020-00022-6; http://link.springer.com/10.1140/epjb/s10051-020-00022-6; https://dx.doi.org/10.1140/epjb/s10051-020-00022-6; https://link.springer.com/article/10.1140/epjb/s10051-020-00022-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know