Topological defect states and phase transitions in mesoscopic superconducting squares with Rashba spin–orbit interaction
European Physical Journal B, ISSN: 1434-6036, Vol: 95, Issue: 6
2022
- 1Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Based on the spin-generalized Bogoliubov–de Gennes theory, we investigate the topological defect configurations in a mesoscopic superconducting square with spin–orbit (SO) interaction. The mixed even-parity d-wave and extended s-wave components can be obtained by suitable choice of the chemical potential in such a system. We find that several novel types of topological defect states can be generated in the presence of Rashba SO coupling when the external magnetic flux turns on. Unclosed domain-wall states carrying even or odd number of one-component vortices as well as double-quanta skyrmionic patterns can appear for different Rashba SO-coupling strengths. The next-nearest-neighbor hopping effect on the evolution of topological structures is further examined. A skyrmionic chain feature with one-component vortex–antivortex pairs can show up in the present mixed-pairing system. Our investigation may provide useful information for future experiments and shed new light on device designing.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85132999743&origin=inward; http://dx.doi.org/10.1140/epjb/s10051-022-00369-y; https://link.springer.com/10.1140/epjb/s10051-022-00369-y; https://dx.doi.org/10.1140/epjb/s10051-022-00369-y; https://link.springer.com/article/10.1140/epjb/s10051-022-00369-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know