Averaging generalized scalar field cosmologies I: locally rotationally symmetric Bianchi III and open Friedmann–Lemaître–Robertson–Walker models
European Physical Journal C, ISSN: 1434-6052, Vol: 81, Issue: 5
2021
- 11Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index γ for locally rotationally symmetric (LRS) Bianchi III metric and open Friedmann–Lemaître–Robertson–Walker (FLRW) metric are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averaged versions have the same late-time dynamics. Therefore, simple time-averaged systems determine the future asymptotic behavior. Depending on values of barotropic index γ late-time attractors of physical interests for LRS Bianchi III metric are Bianchi III flat spacetime, matter dominated FLRW universe (mimicking de Sitter, quintessence or zero acceleration solutions) and matter-curvature scaling solution. For open FLRW metric late-time attractors are a matter dominated FLRW universe and Milne solution. With this approach, oscillations entering nonlinear system through Klein–Gordon (KG) equation can be controlled and smoothed out as the Hubble factor H – acting as a time-dependent perturbation parameter – tends monotonically to zero. Numerical simulations are presented as evidence of such behaviour.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85105705499&origin=inward; http://dx.doi.org/10.1140/epjc/s10052-021-09185-7; https://link.springer.com/10.1140/epjc/s10052-021-09185-7; https://dx.doi.org/10.1140/epjc/s10052-021-09185-7; https://link.springer.com/article/10.1140/epjc/s10052-021-09185-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know