Cosmological dynamics and bifurcation analysis of the general non-minimal coupled scalar field models
European Physical Journal C, ISSN: 1434-6052, Vol: 81, Issue: 8
2021
- 4Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Non-minimal coupled scalar field models are well-known for providing interesting cosmological features. These include a late-time dark energy behavior, a phantom dark energy evolution without singularity, an early-time inflationary Universe, scaling solutions, convergence to the standard Λ CDM, etc. While the usual stability analysis helps us determine the evolution of a model geometrically, bifurcation theory allows us to precisely locate the parameters’ values describing the global dynamics without a fine-tuning of initial conditions. Using the center manifold theory and bifurcation analysis, we show that the general model undergoes a transcritical bifurcation, predicting us to tune our models to have certain desired dynamics. We obtained a class of models and a range of parameters capable of describing a cosmic evolution from an early radiation era towards a late time dark energy era over a wide range of initial conditions. There is also a possible scenario of crossing the phantom divide line. We also find a class of models where the late time attractor mechanism is indistinguishable from a structurally stable general relativity-based model; thus, we can elude the big rip singularity generically. Therefore, bifurcation theory allows us to select models that are viable with cosmological observations.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113693343&origin=inward; http://dx.doi.org/10.1140/epjc/s10052-021-09559-x; https://link.springer.com/10.1140/epjc/s10052-021-09559-x; https://dx.doi.org/10.1140/epjc/s10052-021-09559-x; https://link.springer.com/article/10.1140/epjc/s10052-021-09559-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know