Conserved spin operator of Dirac’s theory in spatially flat FLRW space-times
European Physical Journal C, ISSN: 1434-6052, Vol: 84, Issue: 5
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
New conserved spin and orbital angular momentum operators of Dirac’s theory on spatially flat FLRW space-times are proposed generalizing thus the recent results concerning the role of Pryce’s spin operator in the flat case (Cotăescu in Eur Phys J C, 82, 1073, 2022). These operators split the conserved total angular momentum generating the new spin and orbital symmetries that form the rotations of the isometry groups. The new spin operator is defined and studied in active mode with the help of a suitable spectral representation giving its Fourier transform. Moreover, in the same manner is defined the operator of the fermion polarization. The orbital angular momentum is derived in passive mode using a new method, inspired by Wigner’s theory of induced representations, but working properly only for global rotations. In this approach the quantization is performed finding that the one-particle spin and orbital angular momentum operators have the same form in any FLRW spacetime regardless their concrete geometries given by various scale factors.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192087175&origin=inward; http://dx.doi.org/10.1140/epjc/s10052-024-12791-w; https://link.springer.com/10.1140/epjc/s10052-024-12791-w; https://dx.doi.org/10.1140/epjc/s10052-024-12791-w; https://link.springer.com/article/10.1140/epjc/s10052-024-12791-w
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know