Generalized fractal dimensions based comparison analysis of edge detection methods in CT images for estimating the infection of COVID-19 disease
European Physical Journal: Special Topics, ISSN: 1951-6401, Vol: 231, Issue: 18-20, Page: 3717-3739
2022
- 11Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef1
- Captures8
- Readers8
Article Description
The coronavirus, also known as COVID-19, has become highly contagious and has been associated with one of the world’s deadliest diseases. It also has direct effects on human lungs, causing significant damage. CT-scans are commonly employed in such circumstances to promptly evaluate, detect, and treat COVID-19 patients. Without any filtering, CT-scan images are more difficult to identify the damaged parts of the lungs and determine the severity of various diseases. In this paper, we use the multifractal theory to evaluate COVID-19 patient’s CT-scan images to analyze the complexity of the various patient’s original, filtered, and edge detected CT-scan images. To precisely characterize the severity of the disease, the original, noisy and denoised images are compared. Furthermore, the edge detection and filtered methods called Robert, Prewitt, and Sobel are applied to analyze the various patient’s COVID-19 CT-scan images and examined by the multifractal measure in the proposed technique. All of the images are converted, filtered and edge detected using Robert, Prewitt, and Sobel edge detection algorithms, and compared by the Generalized Fractal Dimensions are compared. For the CT-scan images of COVID-19 patients, the various Qualitative Measures are also computed exactly for the filtered and edge detected images by Robert, Prewitt, and Sobel schemes. It is observed that Sobel method is performed well for classifying the COIVD-19 patients’ CT-scans used in this research study, when compared to other algorithms. Since the image complexity of the Sobel method is very high for all the images and then more complexity of the images contains more clarity to confirm the COVID-19 images. Finally, the proposed method is supported by ANOVA test and box plots, and the same type of classification in experimental images is explored statistically.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85137522697&origin=inward; http://dx.doi.org/10.1140/epjs/s11734-022-00651-1; http://www.ncbi.nlm.nih.gov/pubmed/36090545; https://link.springer.com/10.1140/epjs/s11734-022-00651-1; https://dx.doi.org/10.1140/epjs/s11734-022-00651-1; https://link.springer.com/article/10.1140/epjs/s11734-022-00651-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know