Mechanical stimulation of cells with electroactive polymer-based soft actuators
European Physical Journal: Special Topics, ISSN: 1951-6401, Vol: 232, Issue: 16, Page: 2695-2708
2023
- 5Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Mechanical stimulation has an important effect on cell morphology and functions. Thus, it is of great research value to develop equipment and technologies for mechanical stimulation of cells. Electroactive polymers (EAPs) are a popular class of soft smart materials developed in the last 30 years. Compared to some traditional smart materials, EAPs have remarkable advantages such as high flexibility, large deformation, light weight, and fast response. Hence, EAP-based soft actuators have been widely used in biomedicine, biomimetic robots, flexible operating instruments, etc. Besides, they are also emerging in the field of biomechanics. In this review, we introduce the primary characteristics and operating mechanism of EAP-based actuators, and summarize a series of representative advances in EAP-based mechanical stimulation of cells and broadly discuss some other biomedical applications of EAP-based actuators.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161865216&origin=inward; http://dx.doi.org/10.1140/epjs/s11734-023-00899-1; https://link.springer.com/10.1140/epjs/s11734-023-00899-1; https://dx.doi.org/10.1140/epjs/s11734-023-00899-1; https://link.springer.com/article/10.1140/epjs/s11734-023-00899-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know