PlumX Metrics
Embed PlumX Metrics

Nonadiabatic effects and the role of small fermi energy in MgB

International Journal of Modern Physics B, ISSN: 0217-9792, Vol: 17, Issue: 4-6 I, Page: 560-566
2003
  • 0
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

There is nowadays a general agreement on a key role of the σ bands in the superconducting properties of MgB. We show that peculiar characteristics of the σ bands give rise to nonadiabatic and anharmonic effects which break the conventional Migdal-Eliashberg framework. Both these features are governed by the small value of the Fermi energy due to the vicinity of the hole doping level to the top of the σ bands. In this context we discuss how the nonadiabatic theory leads to a coherent interpretation of the superconducting properties of MgB without invoking very large couplings and it naturally explains the role of the disorder on T. It also leads to various specific predictions for the properties of MgB and for the material optimization of these type of compounds. Anharmonicity is also investigated by means of LDA calculations. We find that the anharmonic character of the E phonon is essentially driven by the small Fermi energy of the σ holes. We present a simple analytic model which allows us to understand in microscopic terms the role of the small Fermi energy and of the electronic structure. The relation between anharmonicity and nonadiabaticity is pointed out and discussed in relation to various materials.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know