Nonlinear system identification of a refrigeration system
International Journal of Air-Conditioning and Refrigeration, ISSN: 2010-1333, Vol: 24, Issue: 4
2016
- 3Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Applications of advanced control algorithms are important in the refrigeration field to achieve low-energy costs and accurate set-point tracking. However, the designing and tuning of control systems depend on dynamic mathematical models. Approaches like analytical modeling can be time-consuming because they usually lead to a large number of differential equations with unknown parameters. In this work, the application of system identification with the fast recursive orthogonal least square (FROLS) algorithm is proposed as an alternative to analytical modeling to develop a process dynamic model. The evaporating temperature (EVT), condensing temperature (CDT) and useful superheat (USH) are the outputs of interest for this system; covariance analysis of the candidate inputs shows that the model should be single-input-single-output (SISO). Good simulation results are obtained with two different validation data, with average output errors of 0.0343 (EVT model), 0.0079 (CDT model) and 0.1578 (USH model) for one of the datasets, showing that this algorithm is a valid alternative for modeling refrigeration systems.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85006324387&origin=inward; http://dx.doi.org/10.1142/s2010132516500243; https://www.worldscientific.com/doi/abs/10.1142/S2010132516500243; http://www.worldscientific.com/doi/abs/10.1142/S2010132516500243; http://www.worldscientific.com/doi/pdf/10.1142/S2010132516500243
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know