Cryptanalysis of a Chaotic Block Cryptographic System against Template Attacks
International Journal of Bifurcation and Chaos, ISSN: 0218-1274, Vol: 30, Issue: 15
2020
- 9Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The security of chaotic cryptographic system can be theoretically evaluated by using conventional statistical tests and numerical simulations, such as the character frequency test, entropy test, avalanche test and SP 800-22 tests. However, when the cryptographic algorithm operates on a cryptosystem, the leakage information such as power dissipation, electromagnetic emission and time-consuming can be used by attackers to analyze the secret keys, namely the Side Channel Analysis (SCA) attack. In this paper, a cryptanalysis method is proposed for evaluating the security of a chaotic block cryptographic system from a hardware perspective by utilizing the Template Attacks (TAs). Firstly, a chaotic block cryptographic system is described briefly and implemented based on an Atmel XMEGA microcontroller. Then the TA using a multivariate Gaussian model is introduced. In order to reduce computational complexity and improve the efficiency of TA, the Hamming weight is used in this work to model power consumption traces. The proposed TA method has the following advantages including (a) using the sum of difference to select points of interest of traces, (b) using a data processing method to minimize the influences on power information modeling from the redundant sampling points, and (c) all the traces are aligned precisely before establishing the templates. Experimental results show that the TA can be used to attack the chaotic cryptographic systems and is more efficient, i.e. 32% less attack traces than correlation power analysis, when the templates are properly built.
Bibliographic Details
World Scientific Pub Co Pte Lt
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know