Modelling of NHPP Based Software Reliability Growth Model from the Perspective of Testing Coverage, Error Propagation and Fault Withdrawal Efficiency
International Journal of Reliability, Quality and Safety Engineering, ISSN: 0218-5393, Vol: 29, Issue: 6
2022
- 9Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper presents a software reliability growth model framework modeled from a non-homogenous poisson process (NHPP). Invariably, software testing continues to be a paramount measure for validating the standard of software. Test coverage measures appraise and estimate the proportion and gradation of testing in software. Therefore, presenting a correct picture of the test coverage becomes a prime requisite to guarantee software reliability. As an enhancement over the existing models, the proposed model integrates testing coverage (TC), error propagation, and fault withdrawal efficiency while keeping the number of parameters restrained to make the framework more reliable for parameter estimation. A relative analysis to assess the efficacy of the proposed model and some existing models has been carried out on the failure data obtained from three real-world software applications using six comparison criteria. Finally, the weighted criteria rank method has been used to rank the models and assess their performance. In addition, sensitivity analysis has been carried out to demonstrate the effect of the parameters of the proposed model on the mean value function.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know