FUSE: Towards multi-level functional summarization of protein interaction networks
2011 ACM Conference on Bioinformatics, Computational Biology and Biomedicine, BCB 2011, Page: 2-11
2011
- 4Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (ppi) using graph theoretic analysis. Despite the recent progress, systems level analysis of ppis remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize ppis at multiple resolutions to provide high level views of its functional landscape are still lacking. In this paper, we present a novel data-driven and generic algorithm called fuse (Functional Summary Generator) that generates functional maps of a ppi at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions. By simultaneously evaluating interaction and annotation data, fuse abstracts higher-order interaction maps by reducing the details of the underlying ppi to form a functional summary graph of interconnected functional clusters. To this end, fuse exploits Minimum Description Length (mdl) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. Extensive experiments on real-world ppis demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with go term enrichment. Copyright © 2011 ACM.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know