Relaxing state-access constraints in stateful programmable data planes
Computer Communication Review, ISSN: 1943-5819, Vol: 48, Issue: 1, Page: 3-9
2018
- 6Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Supporting programmable stateful packet forwarding functions in hardware requires a tight balance between functionality and performance. Current state-of-the-art solutions are based on a very conservative model that assumes worst-case workloads. This finally limits the programmability of the system, even if actual deployment conditions may be very different from the worst-case scenario. We use trace-based simulations to highlight the benefits of accounting for specific workload characteristics. Furthermore, we show that relatively simple additions to a switching chip design can take advantage of such characteristics. In particular, we argue that introducing stalls in the switching chip pipeline enables stateful functions to be executed in a larger but bounded time without harming the overall forwarding performance. Our results show that, in some cases, the stateful processing of a packet could use 30x the time budget provided by state of the art solutions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know