Open source disease analysis system of cactus by artificial intelligence and image processing
ACM International Conference Proceeding Series, Page: 1-7
2021
- 1Citations
- 7Usage
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- Usage7
- Abstract Views7
- Captures18
- Readers18
- 18
Conference Paper Description
There is a growing interest in cactus cultivation because of numerous cacti uses from houseplants to food and medicinal applications. Various diseases impact the growth of cacti. To develop an automated model for the analysis of cactus disease and to be able to quickly treat and prevent damage to the cactus. The Faster R-CNN and YOLO algorithm technique were used to analyze cactus diseases automatically distributed into six groups: 1) anthracnose, 2) canker, 3) lack of care, 4) aphid, 5) rusts and 6) normal group. Based on the experimental results the YOLOv5 algorithm was found to be more effective at detecting and identifying cactus disease than the Faster R-CNN algorithm. Data training and testing with YOLOv5S model resulted in a precision of 89.7% and an accuracy (recall) of 98.5%, which is effective enough for further use in a number of applications in cactus cultivation. Overall the YOLOv5 algorithm had a test time per image of only 26 milliseconds. Therefore, the YOLOv5 algorithm was found to suitable for mobile applications and this model could be further developed into a program for analyzing cactus disease.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85112211391&origin=inward; http://dx.doi.org/10.1145/3468784.3469075; https://dl.acm.org/doi/10.1145/3468784.3469075; https://ir.lib.uwo.ca/electricalpub/198; https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1206&context=electricalpub; https://dx.doi.org/10.1145/3468784.3469075
Association for Computing Machinery (ACM)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know