E-detector: Asynchronous Spatio-temporal for Event-based Object Detection in Intelligent Transportation System
ACM Transactions on Multimedia Computing, Communications and Applications, ISSN: 1551-6865, Vol: 20, Issue: 2, Page: 1-20
2023
- 2Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In intelligent transportation systems, various sensors, including radar and conventional frame cameras, are used to improve system robustness in various challenging scenarios. An event camera is a novel bio-inspired sensor that has attracted the interest of several researchers. It provides a form of neuromorphic vision to capture motion information asynchronously at high speeds. Thus, it possesses advantages for intelligent transportation systems that conventional frame cameras cannot match, such as high temporal resolution, high dynamic range, as well as sparse and minimal motion blur. Therefore, this study proposes an E-detector based on event cameras that asynchronously detect moving objects. The main innovation of our framework is that the spatiotemporal domain of the event camera can be adjusted according to different velocities and scenarios. It overcomes the inherent challenges that traditional cameras face when detecting moving objects in complex environments, such as high speed, complex lighting, and motion blur. Moreover, our approach adopts filter models and transfer learning to improve the performance of event-based object detection. Experiments have shown that our method can detect high-speed moving objects better than conventional cameras using state-of-the-art detection algorithms. Thus, our proposed approach is extremely competitive and extensible, as it can be extended to other scenarios concerning high-speed moving objects. The study findings are expected to unlock the potential of event cameras in intelligent transportation system applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know