One-pot synthesis of platinum nanoparticles embedded on reduced graphene oxide for oxygen reduction in methanol fuel cells
Electrochemical and Solid-State Letters, ISSN: 1099-0062, Vol: 14, Issue: 7, Page: B70-B73
2011
- 89Citations
- 136Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A simple approach has been developed for the synthesis of Pt nanoparticles with uniform diameters of approximately 2.9 nm supported on reduced graphene oxide (RG-O) platelets via a modified polyol method. Compared to Johnson Matthey (JM) Pt/C (75 wt Pt) catalyst, the Pt/RG-O (70 wt Pt) composite showed much higher electrochemical surface area, greater catalytic activity towards the oxygen reduction reaction (ORR), and significantly better single cell polarization performance. The maximum power density of the Pt/RG-O composite was about 128 mW cm, an 11 greater than the JM Pt/C commercial catalyst. © 2011 The Electrochemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know