PlumX Metrics
Embed PlumX Metrics

Understanding the Role of Solvents on the Morphological Structure and Li-Ion Conductivity of Poly(vinylidene fluoride)-Based Polymer Electrolytes

Journal of the Electrochemical Society, ISSN: 1945-7111, Vol: 167, Issue: 7
2020
  • 57
    Citations
  • 0
    Usage
  • 68
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    57
    • Citation Indexes
      57
  • Captures
    68

Article Description

Polymer-based solid-state electrolytes (SSEs) are promising candidates to enhance the performances of current lithium-ion batteries (LiBs), as they possess advantages of facile processing and flexibility over ceramic SSEs. However, polymer SSEs such as poly(ethylene oxide) (PEO) suffer from low ionic conductivity, a limited voltage stability window, and thermal stability. Poly(vinylidene fluoride) (PVDF)-based polymer electrolytes (PPEs) with lean solvent confinement provide improved ionic conductivity and outstanding chemical/electrochemical stability. In this study, we report the effects of different solvents on the morphological structure and ionic conductivity of PPEs. We demonstrate that solvents with relatively high boiling points (dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-Methyl-2-pyrrolidone (NMP), and dimethylacetamide (DMA)) can be trapped in PPEs, and they all have positive effects on the ionic conductivity. The ionic conductivity is related to the quantity of the trapped solvent; for a PPE with DMF retention of ∼20%, the ionic conductivity is about 0.1 mS cm. Increasing the amount of lithium salt was found to improve the solvent retention but at the cost of membranes' mechanical property. It is also possible to introduce a low boiling point co-solvent in order to reduce the production cost and drying duration for manufacturing PPEs.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know