Inhibition of neuronal nitric oxide synthase by 7-nitroindazole attenuates acute lung injury in an ovine model
American Journal of Physiology - Regulatory Integrative and Comparative Physiology, ISSN: 0363-6119, Vol: 285, Issue: 2 54-2, Page: R366-72
2003
- 70Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations70
- Citation Indexes70
- 70
- CrossRef55
- Captures22
- Readers22
- 22
Article Description
Nitric oxide (NO) has been'shown to play a major role in acute lung injury (ALI) after smoke inhalation. In the present study, we developed an ovine sepsis model, created by exposing sheep to smoke inhalation followed by instillation of bacteria into the airway, that mimics human sepsis and pneumonia. We hypothesized that the inhibition of neuronal NO synthase (nNOS) might be beneficial in treating ALI associated with this model. Female sheep (n = 26) were surgically prepared for the study and given a tracheostomy. This was followed by insufflation of 48 breaths of cotton smoke (40°C) into the airway of each animal and subsequent instillation of live Pseudomonas aeruginosa [5 × 10 colony forming units (CFU)] into each sheep's lung. All sheep were mechanically ventilated using 100% O. Continuous infusion of 7-nitroindazole (7-NI), an nNOS inhibitor, N-monomethyl-L-arginine (L-NMMA), a nonspecific NOS inhibitor, or aminoguanidine (AG), an inducible NOS inhibitor, was started 1 h after insult. The administration of 7-NI improved pulmonary gas exchange (Pa/FI; where Pa is arterial PO and FI is fractional inspired oxygen concentration) and pulmonary shunt fraction and attenuated the increase in lung wet-to-dry weight ratio seen in the nontreated sheep. Histologically, 7-NI prevented airway obstruction. The increase in airway blood flow after injury in the nontreated group was significantly inhibited by 7-NI. The increase in plasma concentration of nitrate and nitrite (NOx) was inhibited by 7-NI as well. Posttreatment with L-NMMA improved the pulmonary gas exchange, but AG did not. The results of the present study show that nNOS may be involved in the pathogenesis of ALI after smoke inhalation injury followed by bacterial instillation in the airway.
Bibliographic Details
American Physiological Society
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know