Coordinated excitatory effect of GABAergic interneurons on three feeding motor programs in the mollusk Clione limacina
Journal of Neurophysiology, ISSN: 0022-3077, Vol: 93, Issue: 1, Page: 305-315
2005
- 19Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- CrossRef19
- 19
- Captures11
- Readers11
- 11
Article Description
Coordination between different motor centers is essential for the orderly production of all complex behaviors. Understanding the mechanisms of such coordination during feeding behavior in the carnivorous mollusk Clione limacina is the main goal of the current study. A bilaterally symmetrical interneuron identified in the cerebral ganglia and designated Cr-BM neuron produced coordinated activation of neural networks controlling three main feeding structures: prey capture appendages called buccal cones, chitinous hooks used for prey extraction from the shell, and the toothed radula. The Cr-BM neuron produced strong excitatory inputs to motoneurons controlling buccal cone protraction. It also induced a prominent activation of the neural networks controlling radula and hook rhythmic movements. In addition to the overall activation, Cr-BM neuron synaptic inputs to individual motoneurons coordinated their activity in a phase-dependent manner. The Cr-BM neuron produced depolarizing inputs to the radula protractor and hook retractor motoneurons, which are active in one phase, and hyperpolarizing inputs to the radula retractor and hook protractor motoneurons, which are active in the opposite phase. The Cr-BM neuron used GABA as its neurotransmitter. It was found to be GABA-immunoreactive in the double-labeling experiments. Exogenous GABA mimicked the effects produced by Cr-BM neuron on the postsynaptic neurons. The GABA antagonists bicuculline and picrotoxin blocked Cr-BM neuron-induced PSPs. The prominent coordinating effect produced by the Cr-BM neuron on the neural networks controlling three major elements of the feeding behavior in Clione suggests that this interneuron is an important part of the higher-order system for the feeding behavior. Copyright © 2005 The American Physiological Society.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=16644375030&origin=inward; http://dx.doi.org/10.1152/jn.00722.2004; http://www.ncbi.nlm.nih.gov/pubmed/15331621; https://www.physiology.org/doi/10.1152/jn.00722.2004; http://jn.physiology.org/cgi/doi/10.1152/jn.00722.2004; http://jn.physiology.org/content/93/1/305
American Physiological Society
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know