A Review of Artificial Intelligence Methods for Condition Monitoring and Fault Diagnosis of Rolling Element Bearings for Induction Motor
Shock and Vibration, ISSN: 1070-9622, Vol: 2020, Page: 1-20
2020
- 160Citations
- 258Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The fault detection and diagnosis (FDD) along with condition monitoring (CM) and of rotating machinery (RM) have critical importance for early diagnosis to prevent severe damage of infrastructure in industrial environments. Importantly, valuable industrial equipment needs continuous monitoring to enhance the safety, reliability, and availability and to decrease the cost of maintenance of modern industrial systems and applications. However, induction motor (IM) has been extensively used in several industrial processes because it is cheap, reliable, and robust. Rolling bearings are considered to be the main component of IM. Undoubtedly, any failure of this basic component can lead to a serious breakdown of IM and for whole industrial system. Thus, many current methods based on different techniques are employed as a fault prognosis and diagnosis of rolling elements bearing of IM. Moreover, these techniques include signal/image processing, intelligent diagnostics, data fusion, data mining, and expert systems for time and frequency as well as time-frequency domains. Artificial intelligence (AI) techniques have proven their significance in every field of digital technology. Industrial machines, automation, and processes are the net frontiers of AI adaptation. There are quite developed literatures that have been approaching the issues using signals and data processing techniques. However, the key contribution of this work is to present an extensive review of CM and FDD of the IM, especially for rolling elements bearings, based on artificial intelligent (AI) methods. This study highlights the advantages and performance limitations of each method. Finally, challenges and future trends are also highlighted.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know