Fixed-Time Synchronization of Delayed Memristive Neural Networks with Discontinuous Activations
Journal of Mathematics, ISSN: 2314-4785, Vol: 2021, Page: 1-25
2021
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, the fixed-time synchronization problem for a class of memristive neural networks with discontinuous neuron activation functions and mixed time-varying delays is investigated. With the help of the fixed-time stability theory, under the framework of Filippov solution and differential inclusion theory, several new and useful sufficient criteria for fixed-time synchronization are obtained by designing two types of energy-saving and simple controllers for the considered systems. Compared with the traditional fixed-time synchronization controller, the controllers used in this paper only have one power exponent term, which is a function of the system state error rather than a constant. Moreover, some previous relevant works are especially improved. Finally, two numerical examples are given to show the correctness and the effectiveness of the obtained theoretical results.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111508635&origin=inward; http://dx.doi.org/10.1155/2021/3350534; https://www.hindawi.com/journals/jmath/2021/3350534/; http://downloads.hindawi.com/journals/jmath/2021/3350534.pdf; http://downloads.hindawi.com/journals/jmath/2021/3350534.xml; https://dx.doi.org/10.1155/2021/3350534
Hindawi Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know