Human-in-the-Loop Predictive Analytics Using Statistical Learning
Journal of Healthcare Engineering, ISSN: 2040-2309, Vol: 2021, Page: 9955635
2021
- 6Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- Captures34
- Readers34
- 34
Article Description
The human-in-the-loop cyber-physical system provides numerous solutions for the challenges faced by the doctors or medical practitioners. There is a linear trend of advancement and automation in the medical field for the early diagnosis of several diseases. One of the critical and challenging diseases in the medical field is coma. In the medical research field, currently, the prediction of these diseases is performed only using the data gathered from the devices only; however, the human's input is much essential to accurately understand their health condition to take appropriate decision on time. Therefore, we have proposed a healthcare framework involving the concept of artificial intelligence in the human-in- the-loop cyber-physical system. This model works via a response loop in which the human's intention is concluded by gathering biological signals and context data, and then, the decision is interpreted to a system action that is recognizable to the human in the physical environment, thereby completing the loop. In this paper, we have designed a model for early prognosis of coma using the electroencephalogram dataset. In the proposed approach, we have achieved the best results using a statistical learning algorithm called autoregressive integrated moving average in comparison to artificial neural networks and long short-term memory models. In order to measure the efficiency of our model, we have used the root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) value to evaluate the linear models as it gives the difference between the measured value and true or correct value. We have achieved the least possible error value for our dataset. To conduct this experiment, we used the dataset available in the phsyionet opensource community.
Bibliographic Details
Hindawi Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know