Stacking Ensemble Learning Process to Predict Rural Road Traffic Flow
Journal of Advanced Transportation, ISSN: 2042-3195, Vol: 2022, Page: 1-12
2022
- 2Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
By predicting and informing the future of traffic through intelligent transportation systems, there is more readiness to avoid traffic congestion. In this study, an ensemble learning process is proposed to predict the hourly traffic flow. First, three base models, including K-nearest neighbors, random forest, and recurrent neural network, are trained. Predictions of base models are given to the XGBoost stacking model and bagged average to determine the final prediction. Two groups of models predict traffic flow of short-term and mid-term future. In mid-term models, predictor features are cyclical temporal features, holidays, and weather conditions. In short-term models, in addition to the mentioned features, the observed traffic flow in the past 3 to 8 hours has been used. The results show that for both short-term and mid-term models, the least prediction error is obtained by the XGBoost model. In mid-term models, the root mean square error of the XGBoost for the Saveh to Tehran direction and Tehran to Saveh direction is 521 and 607 (veh/hr), respectively. For short-term models, these values are decreased to 453 and 386 (veh/hr). This model also brings less prediction error for predicting the first and fourth quartiles of the observed traffic flow as rare events.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know