Target deconvolution of a multikinase inhibitor with antimetastatic properties identifies TAOK3 as a key contributor to a cancer stem cell-like phenotype
Molecular Cancer Therapeutics, ISSN: 1538-8514, Vol: 18, Issue: 11, Page: 2097-2110
2019
- 17Citations
- 28Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- CrossRef6
- Captures28
- Readers28
- 28
Article Description
Pancreatic cancer remains an incurable condition. Its progression is driven, in part, by subsets of cancer cells that evade the cytotoxic effects of conventional chemotherapies. These cells are often low-cycling, multidrug resistant, and adopt a stem cell–like phenotype consistent with the concept of cancer stem cells (CSC). To identify drugs impacting on tumor-promoting CSCs, we performed a differential high-throughput drug screen in pancreatic cancer cells cultured in traditional (2D) monolayers versus three-dimensional (3D) spheroids which replicate key elements of the CSC model. Among the agents capable of killing cells cultured in both formats was a 1H-benzo[d]imidazol-2-amine–based inhibitor of IL2-inducible T-cell kinase (ITK; NCGC00188382, inhibitor #1) that effectively mediated growth inhibition and induction of apoptosis in vitro, and suppressed cancer progression and metastasis formation in vivo. An examination of this agent's polypharmacology via in vitro and in situ phosphoproteomic profiling demonstrated an activity profile enriched for mediators involved in DNA damage repair. Included was a strong inhibitory potential versus the thousand-and-one amino acid kinase 3 (TAOK3), CDK7, and aurora B kinases. We found that cells grown under CSC-enriching spheroid conditions are selectively dependent on TAOK3 signaling. Loss of TAOK3 decreases colony formation, expression of stem cell markers, and sensitizes spheroids to the genotoxic effect of gemcitabine, whereas overexpression of TAOK3 increases stem cell traits including tumor initiation and metastasis formation. By inactivating multiple components of the cell-cycle machinery in concert with the downregulation of key CSC signatures, inhibitor #1 defines a distinctive strategy for targeting pancreatic cancer cell populations.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85074444960&origin=inward; http://dx.doi.org/10.1158/1535-7163.mct-18-1011; http://www.ncbi.nlm.nih.gov/pubmed/31395684; https://aacrjournals.org/mct/article/18/11/2097/92712/Target-Deconvolution-of-a-Multikinase-Inhibitor; https://dx.doi.org/10.1158/1535-7163.mct-18-1011; https://mct.aacrjournals.org/content/18/11/2097
American Association for Cancer Research (AACR)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know