Forecasting brain activity based on models of spatiotemporal brain dynamics: A comparison of graph neural network architectures
Network Neuroscience, ISSN: 2472-1751, Vol: 6, Issue: 3, Page: 665-701
2022
- 9Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- Captures29
- Readers29
- 29
Article Description
Comprehending the interplay between spatial and temporal characteristics of neural dynamics can contribute to our understanding of information processing in the human brain. Graph neural networks (GNNs) provide a new possibility to interpret graph-structured signals like those observed in complex brain networks. In our study we compare different spatiotemporal GNN architectures and study their ability to model neural activity distributions obtained in functional MRI (fMRI) studies. We evaluate the performance of the GNN models on a variety of scenarios in MRI studies and also compare it to a VAR model, which is currently often used for directed functional connectivity analysis. We show that by learning localized functional interactions on the anatomical substrate, GNN-based approaches are able to robustly scale to large network studies, even when available data are scarce. By including anatomical connectivity as the physical substrate for information propagation, such GNNs also provide a multimodal perspective on directed connectivity analysis, offering a novel possibility to investigate the spatiotemporal dynamics in brain networks.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135101697&origin=inward; http://dx.doi.org/10.1162/netn_a_00252; http://www.ncbi.nlm.nih.gov/pubmed/36607180; https://direct.mit.edu/netn/article/6/3/665/111069/Forecasting-brain-activity-based-on-models-of; https://dx.doi.org/10.1162/netn_a_00252
MIT Press - Journals
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know