Cardiopulmonary bypass technology transfer: Musings of a cardiac surgeon
Journal of Biomaterials Science, Polymer Edition, ISSN: 0920-5063, Vol: 13, Issue: 4, Page: 485-499
2002
- 19Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef13
- Captures12
- Readers12
- 12
Article Description
The development of cardiopulmonary bypass (CPB) has been one of the greatest technical advancements in cardiovascular medicine. With heparin anticoagulation, this device can safely replace the circulatory and gas-exchanging functions of the heart and lung, facilitating complex cardiac operations. Limitations still exist however, related to blood reactions at the biomaterial surface, such as cell activation, inflammation and low-grade thrombosis. In this brief review, the thought processes which paralleled the development of CPB biocompatible surfaces such as heparin-coating, will be explored, as well as current theories on the suspected mechanisms by which heparin-coated surfaces act as an anti-inflammatory device during CPB. Results with new surfaces for CPB designed to capitalize on superior protein adsorption properties, such as surface modifying additive (SMA) and poly (2-methoxyethylacrylate) (PMEA), will also be described. Finally, the significance of biomaterial-independent blood activation will be discussed, emphasizing the current need to develop strategies utilizing optimal biomaterials, modified surgical technique and pharmacologic therapy to minimize the systemic complications of CPB.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know