In vitro and in vivo characterization of novel biodegradable polymers for application as drug-eluting stent coatings
Journal of Biomaterials Science, Polymer Edition, ISSN: 1568-5624, Vol: 21, Issue: 4, Page: 529-552
2010
- 28Citations
- 48Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations28
- Citation Indexes28
- 28
- CrossRef17
- Captures48
- Readers48
- 48
Article Description
We have used a series of in vitro and in vivo tests to assess the suitability of two new degradable polymers for application as coatings for drug-eluting stents. The first is a family of urethane-linked multi-block copolymers (MBCP) that comprise blocks of lactide, glycolide, ε-caprolactone and/or poly(ethylene glycol) chain-extended with 1,4-butanediisocyanate (SynBiosys™ polymers). The second is a family of maltodextrin (MD) modified with fatty acid sidechains to yield a hydrophobic polymer (Eureka™ SOLO polymers). We coated stainless-steel stents with two representative urethane-linked MBCPs and one hydrophobic MD polymer alone or in combination with the anti-restenotic drug sirolimus. Urethane-linked MBCPs formed uniform coatings on the stent substrates, withstood crimping and expansion on balloon catheters, completely released sirolimus from the coating within 30 days, and degraded within 30-60 days in PBS. The hydrophobic MD polymer formed uniform coatings, exhibited somewhat slower release of sirolimus (approx. 85% within 30 days), degraded within 60 days in PBS when sirolimus was incorporated in the coating, but showed very slow degradation in the absence of drug. We implanted stents coated with urethane-linked MBCPs or hydrophobic MD polymers in a porcine coronary artery model and used histological analysis at 28- and 90-day end-points to assess the biological response to the materials. Measures of stenosis and inflammation for urethane-linked MBCP and hydrophobic MD polymer coatings were not statistically different from bare metal controls at 28 and 90 days, suggesting that the polymers show good vascular biocompatibility. Endothelialization was nearly complete at 28 days and complete at 90 days for all formulations. Urethane-linked MBCP polymer-only and drug-eluting coatings and hydrophobic MD drug-eluting coatings were nearly completely degraded within 90 days in vivo whereas roughly half of hydrophobic MD polymer-only coatings remained after 90 days. Taken together, our in vitro and in vivo results suggest that SynBiosys urethane-linked MBCP and Eureka SOLO hydrophobic MD polymer families possess the physical and chemical properties and vascular biocompatibility necessary for further investigation for use in the next generation of drug-eluting stents. © Koninklijke Brill NV, Leiden, 2010.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77949573616&origin=inward; http://dx.doi.org/10.1163/156856209x429175; http://www.ncbi.nlm.nih.gov/pubmed/20233507; https://www.tandfonline.com/doi/full/10.1163/156856209X429175; http://www.tandfonline.com/doi/abs/10.1163/156856209X429175; http://www.ingentaconnect.com/content/vsp/bsp/2010/00000021/00000004/art00008
Informa UK Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know