CXCR3 regulates CD4 T cell cardiotropism in pressure overload–induced cardiac dysfunction
JCI Insight, ISSN: 2379-3708, Vol: 4, Issue: 7
2019
- 60Citations
- 43Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations60
- Citation Indexes60
- 60
- CrossRef40
- Captures43
- Readers43
- 43
- Mentions1
- News Mentions1
- 1
Most Recent News
IFN-γ Induces Pleural Mesothelial Cells to Recruit Immune Cells via CXCL10-CXCR3 Axis in a Mouse Pleurisy Model
Introduction Tuberculosis is one global health problem, which causes heavy burden.1 Tuberculous pleurisy is reported to be one of the most common extrapulmonary tuberculosis.2 Th-1
Article Description
Heart failure (HF) is associated in humans and mice with increased circulating levels of CXCL9 and CXCL10, chemokine ligands of the CXCR3 receptor, predominantly expressed on CD4+ Th1 cells. Chemokine engagement of receptors is required for T cell integrin activation and recruitment to sites of inflammation. Th1 cells drive adverse cardiac remodeling in pressure overload–induced cardiac dysfunction, and mice lacking the integrin ligand ICAM-1 show defective T cell recruitment to the heart. Here, we show that CXCR3+ T cells infiltrate the heart in humans and mice with pressure overload–induced cardiac dysfunction. Genetic deletion of CXCR3 disrupts CD4+ T cell heart infiltration and prevents adverse cardiac remodeling. We demonstrate that cardiac fibroblasts and cardiac myeloid cells that include resident and infiltrated macrophages are the source of CXCL9 and CXCL10, which mechanistically promote Th1 cell adhesion to ICAM-1 under shear conditions in a CXCR3-dependent manner. To our knowledge, our findings identify a previously unrecognized role for CXCR3 in Th1 cell recruitment into the heart in pressure overload–induced cardiac dysfunction.
Bibliographic Details
American Society for Clinical Investigation
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know