Critical review and illustrative examples of office occupant modelling formalisms
Building Services Engineering Research and Technology, ISSN: 1477-0849, Vol: 40, Issue: 6, Page: 732-757
2019
- 25Citations
- 87Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
It is widely understood that occupants can have a significant impact on building performance. Accordingly, the field has benefited extensively from research efforts in the past decade. However, the methods and terminology involved in modelling occupants in buildings remains fragmented across a large number of studies. This fragmentation represents a major obstacle to those who intend to join in this research endeavor as well as for the convergence and standardization of methods. To address this issue, this paper investigates occupant modelling methods for the key domains of electric lighting, blinds, operable windows, thermostats, plug loads, and occupancy. In the reviewed literature, five broad categories of occupant model formalisms were identified: schedules, Bernoulli models, discrete-time Markov models, discrete-event Markov models, and survival models. Illustrative examples were provided from two independent datasets to demonstrate the strengths and weaknesses of these model forms. It was shown that Markov models are suitable to represent occupants' adaptive behaviors, while survival models are suitable to represent occupancy, non-adaptive behaviors, and infrequently executed adaptive behaviors, such as the blinds opening behavior. Practical application : The engineering application of the occupant modelling formalisms that are critically reviewed in this paper is that these models are highly beneficial for incorporating occupants' presence and behaviors into building design and control. Building design can be improved significantly regarding energy use and occupant comfort when the most suitable occupant models are implemented in simulation-aided building design process. Ultimately, like for any modelling domain, the most suitable model is dependent on the modelling objective (e.g. optimizing passive design, equipment sizing), building type and size, occupant-related domain (e.g. occupancy, window-opening behavior), and climate zones. Furthermore, there is great potential in improving occupant comfort and energy savings of existing buildings when occupants' presence and interactions with buildings' systems and components are predicted accurately using occupant models.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know