Taguchi parametric analysis of the effects of electrode and magnetic actuator characteristics on Lorentz forces and heat transfer of a weak low-profile magneto-hydrodynamic blanket propulsion system
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, ISSN: 2041-2983, Vol: 231, Issue: 19, Page: 3553-3568
2017
- 1Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Parametric studies are conducted on different aspects of a planar MHD propulsion system called propulsive MHD blanket. Effects of nine different parameters on the electro-magnetic thrust, efficiency, and heat transfer of the blanket are investigated. To efficiently conduct the parametric analysis, the Taguchi test design method is used and 16 cases are defined. The Ansys-CFX commercial code is utilized as numerical solver and the obtained results are validated using the Hartman problem which indicated a negligible error of 0.16%. Electromagnetism, energy, mass, and momentum equations are considered for the fluid domain and heat transfer and electromagnetism equations are solved for the solid domain. On one hand, magnet shapes and type are found to be the highest effective parameters, followed by the electrodes voltage, length, and width. On the other hand, a prediction of the best combination of parameters for obtaining the highest electro-magnetic thrust are statistically accomplished which has produced an electro-magnetic thrust of 18.02 N per square meter for the MHD blanket which is twice the maximum electro-magnetic thrust obtained in the 16 initial test cases. It is demonstrated in the present paper that the unique applications of propulsive MHD blanket can compensate the very low efficiencies of MHD systems. It has also been shown that efficiency can be improved by enhancing the water conductivity, which is intended as a future study.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know