A regression method for modelling geometric rates
Statistical Methods in Medical Research, ISSN: 1477-0334, Vol: 26, Issue: 6, Page: 2700-2707
2017
- 9Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef8
- Captures6
- Readers6
Article Description
The occurrence of an event of interest over time is often summarized by the incidence rate, defined as the average number of events per person-time. This type of rate applies to events that may occur repeatedly over time on any given subject, such as infections, and Poisson regression represents a natural regression method for modelling the effect of covariates on it. However, for events that can occur only once, such as death, the geometric rate may be a better summary measure. The geometric rate has long been utilized in demography for studying the growth of populations and in finance to compute compound interest on capital. This type of rate, however, is virtually unknown to medical research. This may be partly a consequence of the lack of a regression method for it. This paper describes a regression method for modelling the effect of covariates on the geometric rate. The described method is based on applying quantile regression to a transform of the time-to-event variable. The proposed method is used to analyze mortality in a randomized clinical trial and in an observational epidemiological study.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know