Visual Analytics of Genomic and Cancer Data: A Systematic Review
Cancer Informatics, ISSN: 1176-9351, Vol: 18, Page: 1176935119835546
2019
- 21Citations
- 129Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef19
- Captures129
- Readers129
- 129
Review Description
Visual analytics and visualisation can leverage the human perceptual system to interpret and uncover hidden patterns in big data. The advent of next-generation sequencing technologies has allowed the rapid production of massive amounts of genomic data and created a corresponding need for new tools and methods for visualising and interpreting these data. Visualising genomic data requires not only simply plotting of data but should also offer a decision or a choice about what the message should be conveyed in the particular plot; which methodologies should be used to represent the results must provide an easy, clear, and accurate way to the clinicians, experts, or researchers to interact with the data. Genomic data visual analytics is rapidly evolving in parallel with advances in high-throughput technologies such as artificial intelligence (AI) and virtual reality (VR). Personalised medicine requires new genomic visualisation tools, which can efficiently extract knowledge from the genomic data and speed up expert decisions about the best treatment of individual patient’s needs. However, meaningful visual analytics of such large genomic data remains a serious challenge. This article provides a comprehensive systematic review and discussion on the tools, methods, and trends for visual analytics of cancer-related genomic data. We reviewed methods for genomic data visualisation including traditional approaches such as scatter plots, heatmaps, coordinates, and networks, as well as emerging technologies using AI and VR. We also demonstrate the development of genomic data visualisation tools over time and analyse the evolution of visualising genomic data.
Bibliographic Details
SAGE Publications
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know