Biometric identity systems in law enforcement and the politics of (voice) recognition: The case of SiiP
Big Data and Society, ISSN: 2053-9517, Vol: 8, Issue: 2
2021
- 7Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Biometric identity systems are now a prominent feature of contemporary law enforcement, including in Europe. Often advanced on the premise of efficiency and accuracy, they have also been the subject of significant controversy. Much attention has focussed on longer-standing biometric data collection, such as finger-printing and facial recognition, foregrounding concerns with the impact such technologies can have on the nature of policing and fundamental human rights. Less researched is the growing use of voice recognition in law enforcement. This paper examines the case of the recent Speaker Identification Integrated Project, a European wide initiative to create the first international and interoperable database of voice biometrics, now the third largest biometric database at Interpol. Drawing on Freedom of Information requests, interviews and public documentation, we outline the emergence and features of SiiP and explore how voice is recognised and attributed meaning. We understand Speaker Identification Integrated Project as constituting a particular ‘regime of recognition’ premised on the use of soft biometrics (age, language, accent and gender) to disembed voice in order to optimise for difference. This, in turn, has implications for the nature and scope of law enforcement, people's position in society, and justice concerns more broadly.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know