Constitutive activation of the MAPK pathway mediates v- fes –induced mitogenesis in murine macrophages
Blood, ISSN: 0006-4971, Vol: 95, Issue: 12, Page: 3959-3963
2000
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
Article Description
Fes is a nonreceptor tyrosine kinase expressed at the highest level in macrophages. We previously showed that the overexpression of c- fes in murine macrophages of the BAC-1.2F5 cell line renders these cells independent of macrophage colony-stimulating factor (MCSF) for survival and proliferation, although no direct relationship could be established between tyrosine-phosphorylated substrates of Fes- and MCSF receptor–dependent signaling and mitogenesis. In this study, we investigated whether the mitogen-activated protein kinase (MAPK) pathway is involved in the growth factor–independent growth of v- fes –overexpressing macrophages. We found a constitutively increased phosphorylation of extracellularly regulated kinase (ERK) in v- fes –overexpressing macrophages as compared with mock-infected cells. This finding was associated with activation of mitogen/extracellular signal–regulated kinase (MEK) and with constitutive localization of ERK in the nucleus. Treatment of v- fes –overexpressing cells with the MEK-specific inhibitor PD98059 markedly reduced cell growth, hyperphosphorylation, and nuclear localization of ERK, indicating that the MAPK pathway mediates the mitogenic effect of v- fes.
Bibliographic Details
American Society of Hematology
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know